广东职业技术学院图书馆书目检索系统

| 暂存书架(0) | 登录

MARC状态:审校 文献类型:中文图书 浏览次数:19

题名/责任者:
可解释机器学习:模型、方法与实践/邵平 ... [等] 著
出版发行项:
北京:机械工业出版社,2022.1
ISBN及定价:
978-7-111-69571-4/CNY79.00
载体形态项:
xii, 211页, [8] 页图版:图 (部分彩图);21cm
并列正题名:
Interpretable machine learning:models, methods practices
个人责任者:
邵平
个人责任者:
杨建颖
个人责任者:
苏思达
学科主题:
机器学习-分析方法-研究
中图法分类号:
TP181-34
题名责任附注:
题名页题: 邵平, 杨建颖, 苏思达, 何悦, 苏钰等著
责任者附注:
邵平, 资深数据科学家, 索信达控股金融AI实验室总监。杨健颖, 云南财经大学统计学硕士, 高级数据挖掘工程师, 一个对数据科学有坚定信念的追求者, 目前重点研究机器学习模型的可解释性。苏思达, 美国天普大学统计学硕士, 机器学习算法专家, 长期为银行提供大数据与人工智能解决方案和技术服务。
提要文摘附注:
本书先从背景出发, 阐述黑盒模型存在的问题以及不解决黑盒模型问题可能带来的后果, 引出可解释机器学习的重要性; 随后从可解释机器学习的研究方向, 分为内在可解释模型算法和模型事后解析方法两部分进行介绍, 阐述不同模型的原理、应用及其可解释性; 最后通过三个不同的应用场景, 介绍在银行实战中的数据挖掘方法, 由问题、处理方法出发, 结合可解释机器学习模型结果, 证明模型的有效性和实用性。期望读者通过对本书的阅读, 可以更快、更好地解决实际业务问题, 而非纸上谈兵。业务场景均为业内的典型案例, 希望能够对读者有所启发。
使用对象附注:
机器学习分析方法研究人员
全部MARC细节信息>>
索书号 条码号 年卷期 馆藏地 书刊状态 还书位置
TP181-34/1 00717745   南海校区书库 (图书定位请点击这里)    可借 南海校区书库
TP181-34/1 00717744   书库 (图书定位请点击这里)    可借 书库
TP181-34/1 00717746   书库 (图书定位请点击这里)    可借 书库
显示全部馆藏信息
借阅趋势

同名作者的其他著作(点击查看)
用户名:
密码:
验证码:
请输入下面显示的内容
  证件号 条码号 Email
 
姓名:
手机号:
送 书 地:
收藏到: 管理书架